On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
общая лексика
логарифмирование
Логари́фм числа по основанию (от др.-греч. λόγος, «отношение» + ἀριθμός «число») определяется как показатель степени, в которую надо возвести основание , чтобы получить число . Обозначение: , произносится: «логарифм по основанию ».
Из определения следует, что нахождение равносильно решению уравнения . Например, , потому что .
Вычисление логарифма называется логарифми́рованием. Числа и чаще всего вещественные, но существует также теория комплексных логарифмов.
Логарифмы обладают уникальными свойствами, которые определили их широкое использование для существенного упрощения трудоёмких вычислений. При переходе «в мир логарифмов» умножение заменяется на значительно более простое сложение, деление — на вычитание, а возведение в степень и извлечение корня преобразуются соответственно в умножение и деление на показатель степени. Лаплас говорил, что изобретение логарифмов, «сократив труд астронома, удвоило его жизнь».
Определение логарифмов и таблицу их значений (для тригонометрических функций) впервые опубликовал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, расширенные и уточнённые другими математиками, повсеместно использовались для научных и инженерных расчётов более трёх веков, пока не появились электронные калькуляторы и компьютеры.
Со временем выяснилось, что логарифмическая функция незаменима и во многих других областях человеческой деятельности: решение дифференциальных уравнений, классификация значений величин (например, частота и интенсивность звука), аппроксимация различных зависимостей, теория информации, теория вероятностей и т. д. Эта функция относится к числу элементарных, она обратна по отношению к показательной функции. Чаще всего используются вещественные логарифмы с основаниями (двоичный), число Эйлера e (натуральный) и (десятичный логарифм).